ExactCouples : Index
-
An exact couple associated to a Young tableau -- a standard filling provides a filtration by monomial ideals
-
Bockstein spectral sequence -- a singly-graded spectral sequence built from the chain self-map "multiplication by p"
-
canonicalFiltration -- filters a complex by its truncations
-
canonicalFiltration(Ring,Module) -- filters a complex by its truncations
-
Cellular chains as an E1 page -- A spectral sequence construction of the usual cellular differential
-
chainModule -- writes a chain complex of R-modules as an R[d]/d^2-module
-
chainModule(ChainComplex) -- writes a chain complex of R-modules as an R[d]/d^2-module
-
chainModule(Ring,ChainComplex) -- writes a chain complex of R-modules as an R[d]/d^2-module
-
chainModuleHomology -- computes the d-cohomology of an R[d]/d^2-module
-
chainModuleHomology(Module) -- computes the d-cohomology of an R[d]/d^2-module
-
chainModuleHomology(ZZ,Module) -- computes the d-cohomology of an R[d]/d^2-module
-
contravariantExtCouple -- the exact couple obtained by applying Ext(-,Y) to a filtered module
-
contravariantExtCouple(List,Module) -- the exact couple obtained by applying Ext(-,Y) to a filtered module
-
contravariantExtCouple(Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
contravariantExtCouple(Symbol,Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
contravariantExtLES -- the long exact sequence in Ext induced by an inclusion in the first coordinate of Hom
-
contravariantExtLES(ZZ,Module,Module,Module) -- the long exact sequence in Ext induced by an inclusion in the first coordinate of Hom
-
Conventions and first examples -- specifics on encoding exact couples as modules for a ring
-
cospan -- mods out by a collection of module elements
-
cospan(Sequence) -- mods out by a collection of module elements
-
cospan(Thing) -- mods out by a collection of module elements
-
coupleRing -- builds a couple ring
-
coupleRing(Ring,ZZ,Symbol,Symbol) -- builds a couple ring
-
covariantExtCouple -- the exact couple obtained by applying Ext(W,-) to a filtered module
-
covariantExtCouple(Module,List) -- the exact couple obtained by applying Ext(W,-) to a filtered module
-
covariantExtCouple(Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
covariantExtCouple(Symbol,Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
covariantExtLES -- the long exact sequence in Ext induced by an inclusion in the last coordinate of Hom
-
covariantExtLES(ZZ,Module,Module,Module) -- the long exact sequence in Ext induced by an inclusion in the last coordinate of Hom
-
declareCouple -- initializes generating classes for an exact couple
-
declareCouple(Ring,List,List) -- initializes generating classes for an exact couple
-
declareGenerators -- builds a free module and names its generators
-
declareGenerators(Ring,List) -- builds a free module and names its generators
-
derivedCouple -- builds the derived couple of an exact couple
-
derivedCouple(Module) -- builds the derived couple of an exact couple
-
derivedCouple(ZZ,Module) -- builds the derived couple of an exact couple
-
derivedCoupleRing -- forms the ring that acts on a derived couple
-
derivedCoupleRing(Ring) -- forms the ring that acts on a derived couple
-
distinguishedTriangleLaw (missing documentation)
-
eid (missing documentation)
-
Elementary introduction: solving linear equations in abelian groups -- a discussion of the equation 3x+6y=0.
-
Encoding diagrams as modules -- building graded modules with specified modules in certain degrees, and with specified action maps
-
enforceCoupleRelations -- mods out by tautological relations satisfied by every exact couple
-
enforceCoupleRelations(Module) -- mods out by tautological relations satisfied by every exact couple
-
evaluateInDegree -- evaluates a module in a particular degree
-
evaluateInDegree(List,ChainComplex) -- evaluates a module in a particular degree
-
evaluateInDegree(List,Matrix) -- evaluates a module in a particular degree
-
evaluateInDegree(List,Module) -- evaluates a module in a particular degree
-
evaluateInDegreeLaw (missing documentation)
-
Exact couples for Tor and Ext -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
exactCouple -- builds an exact couple from a R[d,f]/d^2-module
-
exactCouple(Module) -- builds an exact couple from a R[d,f]/d^2-module
-
exactCouple(Ring,Module) -- builds an exact couple from a R[d,f]/d^2-module
-
ExactCouples -- spectral sequences by Massey's method of exact couples
-
excerptCouple -- displays one of the long exact sequences in an exact couple
-
excerptCouple(List,ZZ,Module) -- displays one of the long exact sequences in an exact couple
-
excerptLES -- displays a few entries of a long exact sequence
-
excerptLES(ZZ,Module) -- displays a few entries of a long exact sequence
-
excerptLES(ZZ,ZZ,Module) -- displays a few entries of a long exact sequence
-
expectChainRing -- accepts rings of the form R[d]/d^2
-
expectChainRing(Ring) -- accepts rings of the form R[d]/d^2
-
expectCoupleRing -- accepts certain rings of the form R[e_r,f_r], and installs Page, isEvenDegree, and isOddDegree
-
expectCoupleRing(Ring) -- accepts certain rings of the form R[e_r,f_r], and installs Page, isEvenDegree, and isOddDegree
-
expectExactCouple -- accepts a module if it encodes an exact couple
-
expectExactCouple(Module) -- accepts a module if it encodes an exact couple
-
expectFiltrationList -- accepts a list of modules if each includes in the next
-
expectFiltrationList(List) -- accepts a list of modules if each includes in the next
-
expectSequenceRing -- accepts rings of the form R[t]
-
expectSequenceRing(Ring) -- accepts rings of the form R[t]
-
expectTriangleRing -- accepts certain rings of the form R[d,e,f]/(d^2, e^3)
-
expectTriangleRing(Ring) -- accepts certain rings of the form R[d,e,f]/(d^2, e^3)
-
extensionInDegree -- places a copy of a module in a certain degree
-
extensionInDegree(List,Ring,Matrix) -- places a copy of a module in a certain degree
-
extensionInDegree(List,Ring,Module) -- places a copy of a module in a certain degree
-
extensionInDegreeLaw (missing documentation)
-
externalDegreeIndices -- for a ring Q, returns the degree-coordinates present in Q but not in its coefficient ring
-
externalDegreeIndices(Ring) -- for a ring Q, returns the degree-coordinates present in Q but not in its coefficient ring
-
filteredSimplicialComplexCouple -- builds the exact couple associated to a filtered simplicial complex
-
filteredSimplicialComplexCouple(List,Function) -- builds the exact couple associated to a filtered simplicial complex
-
filtrationModule -- converts a filtered module to an R[t]-module
-
filtrationModule(Ring,List) -- converts a filtered module to an R[t]-module
-
Functoriality for Tor and Ext couples -- induced maps between couples and spectral sequences
-
Homology of a combinatorial filtration of $X^n$ -- A spectral sequence that assembles absolute homology from relative
-
internalDegreeIndices -- for a ring, returns the degree-coordinates of its coefficient ring
-
internalDegreeIndices(Ring) -- for a ring, returns the degree-coordinates of its coefficient ring
-
isEvenDegree -- for a couple ring Q, Q.isEvenDegree returns true on page-degrees of Q
-
isOddDegree -- for a couple ring Q, Q.isOddDegree returns true on auxiliary-degrees of Q
-
longExactSequence -- finds the long exact sequence associated to a map of R[d]/d^2-modules
-
longExactSequence(Matrix) -- finds the long exact sequence associated to a map of R[d]/d^2-modules
-
longExactSequence(Ring,Matrix) -- finds the long exact sequence associated to a map of R[d]/d^2-modules
-
mapToTriangleRing -- embeds a ring of the form R[d,f]/d^2 in its triangle ring R[d,e,f]/(d^2,e^3)
-
mapToTriangleRing(Ring) -- embeds a ring of the form R[d,f]/d^2 in its triangle ring R[d,e,f]/(d^2,e^3)
-
Mayer-Vietoris Spectral Sequence -- A spectral sequence that assembles homology from an open cover
-
oneEntry -- builds a one-by-one matrix
-
oneEntry(List,List,RingElement) -- builds a one-by-one matrix
-
oneEntry(List,Nothing,RingElement) -- builds a one-by-one matrix
-
oneEntry(Nothing,List,RingElement) -- builds a one-by-one matrix
-
oneEntry(Nothing,ZZ,RingElement) -- builds a one-by-one matrix
-
oneEntry(ZZ,Nothing,RingElement) -- builds a one-by-one matrix
-
oneEntry(ZZ,ZZ,RingElement) -- builds a one-by-one matrix
-
Page -- for a couple ring Q, Q.Page is the page number
-
pageModule -- gives a page of a spectral sequence as a module for R[d]/d^2 where d is the differential
-
pageModule(ZZ,IndexedVariableTable,Module) -- gives a page of a spectral sequence as a module for R[d]/d^2 where d is the differential
-
pageModule(ZZ,Symbol,Module) -- gives a page of a spectral sequence as a module for R[d]/d^2 where d is the differential
-
plotPages -- displays a few pages of a spectral sequence
-
plotPages(Sequence,Function,Module) -- displays a few pages of a spectral sequence
-
restackModule -- restacks the ring that acts on a module
-
restackModule(List,Module) -- restacks the ring that acts on a module
-
restackRing -- changes the order in which variables were adjoined
-
restackRing(List,Ring) -- changes the order in which variables were adjoined
-
sequenceModule -- builds a graded R[t]-module from a sequence of maps
-
sequenceModule(List) -- builds a graded R[t]-module from a sequence of maps
-
sequenceModule(Ring,List) -- builds a graded R[t]-module from a sequence of maps
-
Serre spectral sequence in homology -- exact couple associated to a fibration
-
structureMap -- computes the action of a ring element on a particular degree
-
structureMap(List,List,RingElement,Module) -- computes the action of a ring element on a particular degree
-
structureMap(List,Nothing,RingElement,Module) -- computes the action of a ring element on a particular degree
-
structureMap(Nothing,List,RingElement,Module) -- computes the action of a ring element on a particular degree
-
toChainComplex -- converts a module for R[d]/d^2 to a chain complex
-
toChainComplex(Module) -- converts a module for R[d]/d^2 to a chain complex
-
TorCouple -- the exact couple obtained by applying Tor(W,-) to a filtered module
-
TorCouple(Module,List) -- the exact couple obtained by applying Tor(W,-) to a filtered module
-
TorCouple(Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
TorCouple(Symbol,Module,Module) -- building couples by applying Tor or Ext to a filtered module or a graded R[t]-module
-
TorLES -- the long exact sequence in Tor induced by an inclusion in the second coordinate
-
TorLES(ZZ,Module,Module,Module) -- the long exact sequence in Tor induced by an inclusion in the second coordinate
-
triangleRing -- builds a triangle ring
-
triangleRing(Ring,Symbol,Symbol,Symbol) -- builds a triangle ring