We show how to use pageModule to study the differentials in a spectral sequence. The following lines construct the homological Serre spectral sequence for the Hopf fibration S^3 \to S^2.
i1 : Q = coupleRing(ZZ,1,e,f,Degrees=>{{-1,0},{2,-2}}) o1 = Q o1 : PolynomialRing |
i2 : declareCouple(Q, {z => {4,0}}, {x => {1,0}, y => {1,2}, w => {5,2}}) o2 = cokernel {5, 2} | e_1^2 e_1f_1 0 0 0 0 0 0 | {1, 0} | 0 0 e_1^2 e_1f_1 0 0 0 0 | {1, 2} | 0 0 0 0 e_1^2 e_1f_1 0 0 | {4, 0} | 0 0 0 0 0 0 e_1^3 f_1 | 4 o2 : Q-module, quotient of Q |
i3 : C = cospan(e_1*z-f_1*y) o3 = cokernel {5, 2} | 0 e_1^2 e_1f_1 0 0 0 0 0 0 | {1, 0} | 0 0 0 e_1^2 e_1f_1 0 0 0 0 | {1, 2} | -f_1 0 0 0 0 e_1^2 e_1f_1 0 0 | {4, 0} | e_1 0 0 0 0 0 0 e_1^3 f_1 | 4 o3 : Q-module, quotient of Q |
i4 : isHomogeneous C o4 = true |
i5 : expectExactCouple C |
We extract the E^1 page as a module for D_1
i6 : prune pageModule(1,D,C) o6 = cokernel {2, 1} | D_1 0 0 0 | {0, 0} | 0 0 D_1 0 | {0, 1} | 0 0 0 D_1 | {2, 0} | 0 D_1 0 0 | ZZ[D ] /ZZ[D ]\ 1 | 1 |4 o6 : -------module, quotient of |------| 2 | 2 | D | D | 1 \ 1 / |
Note that the differential annihilates all four generators. We now extract the E^1 page with its differential, D_2:
i7 : E2 = prune pageModule(2,D,C) o7 = cokernel {2, 0} | 0 0 | {2, 1} | D_2 0 | {0, 0} | 0 D_2 | ZZ[D ] /ZZ[D ]\ 2 | 2 |3 o7 : -------module, quotient of |------| 2 | 2 | D | D | 2 \ 2 / |
i8 : degree D_2 o8 = {-2, 1} o8 : List |
This time, the generator in degree $(2,0)$ maps via D_2 to a nontrivial element in degree $(0,1)$. Since the module has no additional generators in that degree, the differential is an isomorphism between these two degrees. We can also compute the action of this differential directly:
i9 : structureMap({2,0}, {0,1}, D_2, pageModule(2,D,C)) o9 = | 1 | 1 1 o9 : Matrix ZZ <--- ZZ |
Computing the next page shows the cancellation:
i10 : prune pageModule(3,D,C) o10 = cokernel {2, 1} | D_3 0 | {0, 0} | 0 D_3 | ZZ[D ] /ZZ[D ]\ 3 | 3 |2 o10 : -------module, quotient of |------| 2 | 2 | D | D | 3 \ 3 / |
The object pageModule is a method function.