next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ExactCouples :: pageModule

pageModule -- gives a page of a spectral sequence as a module for R[d]/d^2 where d is the differential

Synopsis

Description

We show how to use pageModule to study the differentials in a spectral sequence. The following lines construct the homological Serre spectral sequence for the Hopf fibration S^3 \to S^2.

i1 : Q = coupleRing(ZZ,1,e,f,Degrees=>{{-1,0},{2,-2}})

o1 = Q

o1 : PolynomialRing
i2 : declareCouple(Q, {z => {4,0}}, {x => {1,0}, y => {1,2}, w => {5,2}})

o2 = cokernel {5, 2} | e_1^2 e_1f_1 0     0      0     0      0     0   |
              {1, 0} | 0     0      e_1^2 e_1f_1 0     0      0     0   |
              {1, 2} | 0     0      0     0      e_1^2 e_1f_1 0     0   |
              {4, 0} | 0     0      0     0      0     0      e_1^3 f_1 |

                            4
o2 : Q-module, quotient of Q
i3 : C = cospan(e_1*z-f_1*y)

o3 = cokernel {5, 2} | 0    e_1^2 e_1f_1 0     0      0     0      0     0   |
              {1, 0} | 0    0     0      e_1^2 e_1f_1 0     0      0     0   |
              {1, 2} | -f_1 0     0      0     0      e_1^2 e_1f_1 0     0   |
              {4, 0} | e_1  0     0      0     0      0     0      e_1^3 f_1 |

                            4
o3 : Q-module, quotient of Q
i4 : isHomogeneous C

o4 = true
i5 : expectExactCouple C

We extract the E^1 page as a module for D_1

i6 : prune pageModule(1,D,C)

o6 = cokernel {2, 1} | D_1 0   0   0   |
              {0, 0} | 0   0   D_1 0   |
              {0, 1} | 0   0   0   D_1 |
              {2, 0} | 0   D_1 0   0   |

     ZZ[D ]                     /ZZ[D ]\
         1                      |    1 |4
o6 : -------module, quotient of |------|
        2                       |   2  |
       D                        |  D   |
        1                       \   1  /

Note that the differential annihilates all four generators. We now extract the E^1 page with its differential, D_2:

i7 : E2 = prune pageModule(2,D,C)

o7 = cokernel {2, 0} | 0   0   |
              {2, 1} | D_2 0   |
              {0, 0} | 0   D_2 |

     ZZ[D ]                     /ZZ[D ]\
         2                      |    2 |3
o7 : -------module, quotient of |------|
        2                       |   2  |
       D                        |  D   |
        2                       \   2  /
i8 : degree D_2

o8 = {-2, 1}

o8 : List

This time, the generator in degree $(2,0)$ maps via D_2 to a nontrivial element in degree $(0,1)$. Since the module has no additional generators in that degree, the differential is an isomorphism between these two degrees. We can also compute the action of this differential directly:

i9 : structureMap({2,0}, {0,1}, D_2, pageModule(2,D,C))

o9 = | 1 |

              1        1
o9 : Matrix ZZ  <--- ZZ

Computing the next page shows the cancellation:

i10 : prune pageModule(3,D,C)

o10 = cokernel {2, 1} | D_3 0   |
               {0, 0} | 0   D_3 |

      ZZ[D ]                     /ZZ[D ]\
          3                      |    3 |2
o10 : -------module, quotient of |------|
         2                       |   2  |
        D                        |  D   |
         3                       \   3  /

See also

Ways to use pageModule:

For the programmer

The object pageModule is a method function.