next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ExactCouples :: chainModuleHomology

chainModuleHomology -- computes the d-cohomology of an R[d]/d^2-module

Synopsis

Description

We build the cochain complex for the simplicial complex with vertices {a,b,c} and facets {ab,ac,bc}. Topologically, this is a circle, so the cohomology is QQ^1 in degrees 0 and 1.

i1 : C = QQ[d]/d^2;
i2 : declareGenerators(C,{a=>0,b=>0,c=>0,ab=>1,ac=>1,bc=>1});
i3 : M = cospan(d*a+ab+ac, d*b-ab+bc, d*c-ac-bc, d*ab, d*ac, d*bc);
i4 : apply(5,i->prune evaluateInDegree({i},M))

        3    3
o4 = {QQ , QQ , 0, 0, 0}

o4 : List
i5 : H = chainModuleHomology(M);
i6 : apply(5,i->prune evaluateInDegree({i},H))

        1    1
o6 = {QQ , QQ , 0, 0, 0}

o6 : List
i7 : apply(5,i->prune chainModuleHomology(i,M))

        1    1
o7 = {QQ , QQ , 0, 0, 0}

o7 : List

Caveat

Ways to use chainModuleHomology:

For the programmer

The object chainModuleHomology is a method function.