We build the cochain complex for the simplicial complex with vertices {a,b,c} and facets {ab,ac,bc}. Topologically, this is a circle, so the cohomology is QQ^1 in degrees 0 and 1.
i1 : C = QQ[d]/d^2; |
i2 : declareGenerators(C,{a=>0,b=>0,c=>0,ab=>1,ac=>1,bc=>1}); |
i3 : M = cospan(d*a+ab+ac, d*b-ab+bc, d*c-ac-bc, d*ab, d*ac, d*bc); |
i4 : apply(5,i->prune evaluateInDegree({i},M)) 3 3 o4 = {QQ , QQ , 0, 0, 0} o4 : List |
i5 : H = chainModuleHomology(M); |
i6 : apply(5,i->prune evaluateInDegree({i},H)) 1 1 o6 = {QQ , QQ , 0, 0, 0} o6 : List |
i7 : apply(5,i->prune chainModuleHomology(i,M)) 1 1 o7 = {QQ , QQ , 0, 0, 0} o7 : List |
The object chainModuleHomology is a method function.