Suppose d has degree v. The output chain complex C has C_0 = M_{0*v}, and since the differential in a chain complex has degree -1, it has generally
$C_i = M_{-iv}$.
i1 : R = ZZ[d,Degrees=>{2}]/d^2; |
i2 : M = cokernel map(R^(-{{0},{1},{2},{3}}),,{{4,0,d,0},{0,6,0,d},{0,0,8,0},{0,0,0,10}}) o2 = cokernel {0} | 4 0 d 0 | {1} | 0 6 0 d | {2} | 0 0 8 0 | {3} | 0 0 0 10 | 4 o2 : R-module, quotient of R |
i3 : isHomogeneous M o3 = true |
i4 : prune toChainComplex M o4 = cokernel | 8 | <-- cokernel | 32 | <-- cokernel | 4 | -2 -1 0 o4 : ChainComplex |
i5 : apply(10,d->prune evaluateInDegree({d},M)) o5 = {cokernel | 4 |, cokernel | 6 |, cokernel | 32 |, cokernel | 60 |, ------------------------------------------------------------------------ cokernel | 8 |, cokernel | 10 |, 0, 0, 0, 0} o5 : List |
M must be homogeneous
The object toChainComplex is a method function.