i1 : R = QQ[x] o1 = R o1 : PolynomialRing |
i2 : X = R^1 / x^9 o2 = cokernel | x9 | 1 o2 : R-module, quotient of R |
i3 : submods = apply(5,k->image map(X,,{{x^(8-2*k)}})) o3 = {subquotient (| x8 |, | x9 |), subquotient (| x6 |, | x9 |), subquotient ------------------------------------------------------------------------ (| x4 |, | x9 |), subquotient (| x2 |, | x9 |), subquotient (| 1 |, | x9 ------------------------------------------------------------------------ |)} o3 : List |
i4 : Q = R[t] o4 = Q o4 : PolynomialRing |
i5 : filtrationModule(Q, submods) o5 = subquotient ({0, 0} | x8 0 0 0 0 |, {0, 0} | x8t 0 0 0 x9 0 0 0 0 |) {1, 0} | 0 x6 0 0 0 | {1, 0} | -x8 x6t 0 0 0 x9 0 0 0 | {2, 0} | 0 0 x4 0 0 | {2, 0} | 0 -x6 x4t 0 0 0 x9 0 0 | {3, 0} | 0 0 0 x2 0 | {3, 0} | 0 0 -x4 x2t 0 0 0 x9 0 | {4, 0} | 0 0 0 0 1 | {4, 0} | 0 0 0 -x2 0 0 0 0 x9 | 5 o5 : Q-module, subquotient of Q |
The ring Q should be valid for expectSequenceRing. The list L should be valid for expectFiltrationList.
The object filtrationModule is a method function.