For notational convenience, set $X = A_m$, and extend the sequence $A_i$ to all $i \in \ZZ$ by setting $A_i = 0$ for $i < 0$, and $A_i = X$ for $i > m$.
The returned couple $M$ is a module for the ring R[e_1,f_1,Degrees=>{{1,1},{0,-2}}]. We describe the module $M$ in every bidegree $(s,t)$. The description depends on the parity of $s$ and $t$.
If $s$ and $t$ are both even, say $(s,t) = (2p, 2q)$, then
$M_{s,t} = Ext^p(A_q / A_{q-1}, Y)$;
if $s$ and $t$ are both odd, say $(s,t) = (2p-1,2q-1)$, then
$M_{s,t} = Ext^p(X / A_{q-1}, Y)$;
and otherwise, if $s$ and $t$ sum to an odd number, then $M_{s,t} = 0$.
The variables $e_1$ and $f_1$ act by the maps in the various long exact sequences
$Ext^p((X / A_q), Y) \to Ext^p((X / A_{q-1}), Y) \to Ext^p((A_q / A_{q-1}), Y) \to Ext^{p+1}((X / A_q), Y)$.
Associated spectral sequence
The spectral sequence associated to this couple converges to $Ext^p(X,Y)$. The differential on page $r$ has bidegree $(1,r)$. The first page has
$E^{p,q}_1 = Ext^p(A_q/A_{q-1},Y)$.
Setting $F^p_q = image(Ext^p((X/A_q),Y) \to Ext^p(X,Y))$, the infinity page has
$E^{p,q}_{\infty} = F^p_{q-1} / F^p_q$.
i1 : R = QQ[x] o1 = R o1 : PolynomialRing |
i2 : X = R^1 / x^9 o2 = cokernel | x9 | 1 o2 : R-module, quotient of R |
i3 : submods = apply(5,k->image map(X,,{{x^(8-2*k)}})); |
i4 : for m in submods do print m; subquotient (| x8 |, | x9 |) subquotient (| x6 |, | x9 |) subquotient (| x4 |, | x9 |) subquotient (| x2 |, | x9 |) subquotient (| 1 |, | x9 |) |
i5 : Y = coker map(R^1,,{{x^3}}) o5 = cokernel | x3 | 1 o5 : R-module, quotient of R |
i6 : couple = prune contravariantExtCouple(submods,Y) warning: clearing value of symbol f to allow access to subscripted variables based on it : debug with expression debug 3406 or with command line option --debug 3406 o6 = cokernel {-1, 7, 1} | x2 e_1^2 0 0 0 f_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, 1, -8} | 0 0 0 0 0 0 0 e_1^2 -x2 0 0 0 0 0 0 0 0 0 0 0 0 f_1 0 -x2 x2e_1 0 0 0 0 0 0 | {1, 3, -6} | 0 0 -x 0 0 0 0 0 f_1 e_1^2 0 0 -x2 0 0 0 0 0 0 0 0 0 0 0 0 x2e_1 0 0 0 0 0 | {0, 2, -5} | 0 0 e_1 0 0 0 0 0 0 0 x2 f_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, 5, -4} | 0 0 0 -x 0 0 0 0 0 0 0 0 f_1 e_1^2 0 0 0 -x2 0 0 0 0 0 0 0 0 x2e_1 0 0 0 0 | {0, 4, -3} | 0 0 0 e_1 0 0 0 0 0 0 0 0 0 0 x2 f_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, 7, -2} | 0 0 0 0 -x 0 0 0 0 0 0 0 0 0 0 0 x2 f_1 e_1^2 0 0 0 0 0 0 0 0 0 0 0 0 | {0, 6, -1} | 0 0 0 0 e_1 0 -x 0 0 0 0 0 0 0 0 0 0 0 0 x2 f_1 0 0 0 0 0 0 0 0 0 0 | {-1, 5, 0} | 0 0 0 0 0 -x e_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, -1, -9} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -x 0 0 0 0 0 xe_1 e_1^2 0 e_1f_1 | {0, 0, -6} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x e_1 0 0 0 0 0 f_1 0 | 11 o6 : R[e , f ]-module, quotient of (R[e , f ]) 1 1 1 1 |
i7 : expectExactCouple couple |
i8 : plotPages((-1..2,-1..5,1..3), prune @@ evaluateInDegree, couple) warning: clearing value of symbol e to allow access to subscripted variables based on it : debug with expression debug 3903 or with command line option --debug 3903 warning: clearing value of symbol f to allow access to subscripted variables based on it : debug with expression debug 3406 or with command line option --debug 3406 page 1, with differential of degree {1, 1}: +----++----+--------------------+--------------------+---+ |q=5 ||0 |0 |0 |0 | +----++----+--------------------+--------------------+---+ |q=4 ||0 |cokernel {1} | x2 | |cokernel {-2} | x2 ||0 | +----++----+--------------------+--------------------+---+ |q=3 ||0 |cokernel {-1} | x2 ||cokernel {-4} | x2 ||0 | +----++----+--------------------+--------------------+---+ |q=2 ||0 |cokernel {-3} | x2 ||cokernel {-6} | x2 ||0 | +----++----+--------------------+--------------------+---+ |q=1 ||0 |cokernel {-5} | x2 ||cokernel {-8} | x2 ||0 | +----++----+--------------------+--------------------+---+ |q=0 ||0 |cokernel {-6} | x | |cokernel {-9} | x | |0 | +----++----+--------------------+--------------------+---+ |q=-1||0 |0 |0 |0 | +----++----+--------------------+--------------------+---+ | ||p=-1|p=0 |p=1 |p=2| +----++----+--------------------+--------------------+---+ page 2, with differential of degree {1, 2}: +----++----+-------------------+--------------------+---+ |q=5 ||0 |0 |0 |0 | +----++----+-------------------+--------------------+---+ |q=4 ||0 |cokernel {1} | x2 ||cokernel {-2} | x | |0 | +----++----+-------------------+--------------------+---+ |q=3 ||0 |cokernel | x | |cokernel {-4} | x | |0 | +----++----+-------------------+--------------------+---+ |q=2 ||0 |cokernel {-2} | x ||cokernel {-6} | x | |0 | +----++----+-------------------+--------------------+---+ |q=1 ||0 |cokernel {-4} | x ||cokernel {-8} | x2 ||0 | +----++----+-------------------+--------------------+---+ |q=0 ||0 |cokernel {-6} | x ||cokernel {-9} | x | |0 | +----++----+-------------------+--------------------+---+ |q=-1||0 |0 |0 |0 | +----++----+-------------------+--------------------+---+ | ||p=-1|p=0 |p=1 |p=2| +----++----+-------------------+--------------------+---+ page 3, with differential of degree {1, 3}: +----++----+-------------------+--------------------+---+ |q=5 ||0 |0 |0 |0 | +----++----+-------------------+--------------------+---+ |q=4 ||0 |cokernel {1} | x2 ||0 |0 | +----++----+-------------------+--------------------+---+ |q=3 ||0 |cokernel | x | |0 |0 | +----++----+-------------------+--------------------+---+ |q=2 ||0 |0 |0 |0 | +----++----+-------------------+--------------------+---+ |q=1 ||0 |0 |cokernel {-8} | x2 ||0 | +----++----+-------------------+--------------------+---+ |q=0 ||0 |0 |cokernel {-9} | x | |0 | +----++----+-------------------+--------------------+---+ |q=-1||0 |0 |0 |0 | +----++----+-------------------+--------------------+---+ | ||p=-1|p=0 |p=1 |p=2| +----++----+-------------------+--------------------+---+ |
i9 : A = i -> if i < 0 then image(0*id_X) else if i >= #submods then X else submods#i; |
i10 : E1 = (q,p) -> prune Ext^p(A(q)/A(q-1),Y); |
i11 : netList reverse table(5,2,E1) +--------------------+--------------------+ o11 = |cokernel {1} | x2 | |cokernel {-2} | x2 || +--------------------+--------------------+ |cokernel {-1} | x2 ||cokernel {-4} | x2 || +--------------------+--------------------+ |cokernel {-3} | x2 ||cokernel {-6} | x2 || +--------------------+--------------------+ |cokernel {-5} | x2 ||cokernel {-8} | x2 || +--------------------+--------------------+ |cokernel {-6} | x | |cokernel {-9} | x | | +--------------------+--------------------+ |
i12 : proj = q -> inducedMap(X/A(q),X); |
i13 : filt = (p,q) -> image Ext^p(proj q,Y); |
i14 : Einfty = (q,p) -> prune(filt(p,q-1)/filt(p,q)); |
i15 : netList reverse table(5,2,Einfty) +-------------------+--------------------+ o15 = |cokernel {1} | x2 ||0 | +-------------------+--------------------+ |cokernel | x | |0 | +-------------------+--------------------+ |0 |0 | +-------------------+--------------------+ |0 |cokernel {-8} | x2 || +-------------------+--------------------+ |0 |cokernel {-9} | x | | +-------------------+--------------------+ |
It seems to me that this is the same spectral sequence as the one you would get from the couple
$Ext^p((A_q), Y) \to Ext^p((A_{q-1}), Y) \to Ext^p((A_q / A_{q-1}), Y) \to Ext^{p+1}((A_q), Y)$;
If I learn of a proof of this fact, then I will put the reference here.
The object contravariantExtCouple is a method function.