The module M is concentrated in nonnegative degrees. For $0 \le n \le k$, we have
$M_n \cong A_n$.
For $n \ge k$, the module is constant
$M_n \cong A_k$.
The variable t acts by the supplied maps in the range $0 \le n \le k$, and by the identity past degree k.
i1 : R = QQ[x] o1 = R o1 : PolynomialRing |
i2 : Q = R[t] o2 = Q o2 : PolynomialRing |
i3 : m1 = random(R^{-3,-4,-5},R^{-6,-7,-8}) o3 = {3} | 8x3 7x4 3x5 | {4} | 3x2 x3 8x4 | {5} | 8x 7x2 3x3 | 3 3 o3 : Matrix R <--- R |
i4 : m2 = random(R^{0,-1,-2},R^{-3,-4,-5}) o4 = {0} | 8x3 8x4 2x5 | {1} | 3x2 5x3 5x4 | {2} | 3x 6x2 7x3 | 3 3 o4 : Matrix R <--- R |
i5 : M = sequenceModule(Q,{m1,m2}) o5 = cokernel {0, 6} | t 0 0 0 0 0 | {0, 7} | 0 t 0 0 0 0 | {0, 8} | 0 0 t 0 0 0 | {1, 3} | -8x3 -7x4 -3x5 t 0 0 | {1, 4} | -3x2 -x3 -8x4 0 t 0 | {1, 5} | -8x -7x2 -3x3 0 0 t | {2, 0} | 0 0 0 -8x3 -8x4 -2x5 | {2, 1} | 0 0 0 -3x2 -5x3 -5x4 | {2, 2} | 0 0 0 -3x -6x2 -7x3 | 9 o5 : Q-module, quotient of Q |
i6 : isHomogeneous M o6 = true |
If the degree of the variable t is not 1, the above still applies, but M_n should be interpreted as the degree $n * (deg t)$ part of M.
The object sequenceModule is a method function.