next | previous | forward | backward | up | top | index | toc | Macaulay2 website
ExactCouples :: contravariantExtLES

contravariantExtLES -- the long exact sequence in Ext induced by an inclusion in the first coordinate of Hom

Synopsis

Description

The long exact sequence is returned as a Net with the following general format:

|   .- ->        ...    (k-3) more rows appearing
|  (
|   \
|
|                                                                   \
|   .- ->  Ext^1(X,Y)  - - ->  Ext^1(A,Y)  - - ->  Ext^2(X/A,Y)  - -'
|  (
|   \
|
|                                                                   \
|   .- ->   Hom(X,Y)   - - ->   Hom(A,Y)   - - ->  Ext^1(X/A,Y)  - -'
|  (
|   \
|
|                                                                   \
|   .- ->      0       - - ->       0      - - ->   Hom(X/A,Y)   - -'
|  (
|   \
|
|                                                                   \
|                                                        0       - -'

The next example gives a typical use.

i1 : R = QQ[x]

o1 = R

o1 : PolynomialRing
i2 : X = R^1 / x^9

o2 = cokernel | x9 |

                            1
o2 : R-module, quotient of R
i3 : A = image map(X,,{{x^7}})

o3 = subquotient (| x7 |, | x9 |)

                               1
o3 : R-module, subquotient of R
i4 : Y = coker map(R^1,,{{x^3}})

o4 = cokernel | x3 |

                            1
o4 : R-module, quotient of R
i5 : contravariantExtLES(3,X,A,Y)
warning: clearing value of symbol f to allow access to subscripted variables based on it
       : debug with expression   debug 3406   or with command line option   --debug 3406

o5 =             .- ->           0                                                                                       
          0     (      
                 \     

                                                                                      0                                \ 
                 .- -> cokernel {-9} | x3 | - - - - - - -> cokernel {-9} | x2 |     - - ->               0          - -' 
     {-9} | x2 |(                             {-9} | 1 |
                 \     

                                                                                  {-7} | x |                           \ 
                 .- ->    cokernel | x3 |       - - ->     cokernel {-6} | x2 | - - - - - - -> cokernel {-7} | x3 | - -' 
        | 1 |   (                                 0
                 \     

                                                                                      0                                \ 
                 .- ->           0              - - ->               0              - - ->        cokernel | x3 |   - -' 
          0     (                                 0
                 \     

                                                                                                                       \ 
                                                                                                         0          - -' 
i6 : apply(2, p -> prune Ext^p(X,Y))

o6 = {cokernel | x3 |, cokernel {-9} | x3 |}

o6 : List
i7 : apply(2, p -> prune Ext^p(A,Y))

o7 = {cokernel {-6} | x2 |, cokernel {-9} | x2 |}

o7 : List
i8 : apply(2, p -> prune Ext^p(X/A,Y))

o8 = {cokernel | x3 |, cokernel {-7} | x3 |}

o8 : List

Caveat

For computational access to the maps in the sequence, use contravariantExtCouple instead.

See also

Ways to use contravariantExtLES:

For the programmer

The object contravariantExtLES is a method function.