The external degrees of d and f double, and the external degree of the new variable "e" is the difference of external degrees (degree d) - (degree f).
i1 : R = QQ[x]; |
i2 : Q = R[d,f,Degrees=>{{1,2,3},{10,11,12}}]/d^2 o2 = Q o2 : QuotientRing |
i3 : phi = mapToTriangleRing Q R[d, e, f] o3 = map(----------,Q,{d, f, x}) 2 3 (d , e ) R[d, e, f] o3 : RingMap ---------- <--- Q 2 3 (d , e ) |
i4 : T = target phi o4 = T o4 : QuotientRing |
i5 : degree \ {Q_0, Q_1} o5 = {{1, 2, 3, 0}, {10, 11, 12, 0}} o5 : List |
i6 : degree \ {T_0, T_1, T_2} o6 = {{2, 4, 6, 0}, {-9, -9, -9, 0}, {20, 22, 24, 0}} o6 : List |
The input ring Q must be valid for expectChainSequenceRing.
The object mapToTriangleRing is a method function.